完整的模型训练
train:
import torch
import torchvision
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from model import *
train_data = torchvision.datasets.CIFAR10("./dataset",train=True,transform=torchvision.transforms.ToTensor()
,download=False)
test_data = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor()
,download=False)
train_data_size = len(train_data)
test_data_size = len(test_data)
#
# print(train_data_size)
# print(test_data_size)
train_dataloader = DataLoader(train_data,batch_size=64)
test_dataloader = DataLoader(test_data,batch_size=64)
# 搭建模型
mynet = MyNet()
loss_fn = nn.CrossEntropyLoss()
learning_rate = 0.01
optimizer = torch.optim.SGD(mynet.parameters(),lr=learning_rate)
total_train_step = 0
total_test_step = 0
epoch = 10
writer = SummaryWriter("./logs_train")
for i in range(epoch):
print("第{}轮训练开始".format(i+1))
for data in train_dataloader:
imgs,targets = data
outputs = mynet(imgs)
loss = loss_fn(outputs,targets)
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_train_step += 1
if total_train_step % 100 == 0:
print("训练次数:{},loss:{}".format(total_train_step,loss.item()))
writer.add_scalar("train_loss",loss.item(),total_train_step)
total_test_loss = 0
total_accuracy = 0
with torch.no_grad():
for data in test_dataloader:
imgs,targets = data
outputs = mynet(imgs)
loss = loss_fn(outputs,targets)
total_test_loss += loss
accuracy = (outputs.argmax(1) == targets).sum()
total_accuracy += accuracy
print("total_loss:{}".format(total_test_loss))
print("在测试集上的正确率{}".format(total_accuracy/test_data_size))
writer.add_scalar("test_loss",total_test_loss,total_test_step)
total_test_step +=1
torch.save(mynet,"mynet_{}.pth".format(i))
writer.close()
model:
import torch
from torch import nn
class MyNet(nn.Module):
def __init__(self):
super(MyNet, self).__init__()
self.model = nn.Sequential(
nn.Conv2d(3, 32, 5, 1, 2),
nn.MaxPool2d(2),
nn.Conv2d(32, 32, 5, 1, 2),
nn.MaxPool2d(2),
nn.Conv2d(32, 64, 5, 1, 2),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(1024, 64),
nn.Linear(64, 10)
)
def forward(self, x):
x = self.model(x)
return x
if __name__ == "__main__":
mynet = MyNet()